Book Image

Hands-On Artificial Intelligence for IoT - Second Edition

By : Amita Kapoor
Book Image

Hands-On Artificial Intelligence for IoT - Second Edition

By: Amita Kapoor

Overview of this book

There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence.
Table of Contents (20 chapters)
Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
Index

Learning paradigms


ML algorithms can be classified based on the method they use as follows:

  • Probabilistic versus non-probabilistic
  • Modeling versus optimization
  • Supervised versus unsupervised

In this book, we classify our ML algorithms as supervised versus unsupervised. The distinction between these two depends on how the model learns and the type of data that's provided to the model to learn:

  • Supervised learning: Let's say I give you a series and ask you to predict the next element:

(1, 4, 9, 16, 25,...)

You guessed right: the next number will be 36, followed by 49 and so on. This is supervised learning, also called learning by example; you weren't told that the series represents the square of positive integers—you were able to guess it from the five examples provided.

 

In a similar manner, in supervised learning, the machine learns from example. It's provided with a training data consisting of a set of pairs (X, Y) where X is the input (it can be a single number or an input value with a large number...