Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Reinforcement Learning with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

By : Sudharsan Ravichandiran
2.6 (18)
close
close
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

2.6 (18)
By: Sudharsan Ravichandiran

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.
Table of Contents (16 chapters)
close
close

Convolutional neural networks

CNN, also known as ConvNet, is a special type of neural network and it is extensively used in Computer Vision. The application of a CNN ranges from enabling vision in self-driving cars to the automatic tagging of friends in your Facebook pictures. CNNs make use of spatial information to recognize the image. But how do they really work? How can the neural networks recognize these images? Let's go through this step by step.

A CNN typically consists of three major layers:

  • Convolutional layer
  • Pooling layer
  • Fully connected layer

Convolutional layer

When we feed an image as input, it will actually be converted to a matrix of pixel values. These pixel values range from 0 to 255 and the dimensions...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Reinforcement Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon