Book Image

Hands-On Reinforcement Learning with Python

By : Sudharsan Ravichandiran
Book Image

Hands-On Reinforcement Learning with Python

By: Sudharsan Ravichandiran

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.
Table of Contents (16 chapters)

Prioritized experience replay

In DQN architecture, we use experience replay to remove correlations between the training samples. However, uniformly sampling transitions from the replay memory is not an optimal method. Instead, we can prioritize transitions and sample according to priority. Prioritizing transitions helps the network to learn swiftly and effectively. How do we prioritize the transitions? We prioritize the transitions that have a high TD error. We know that a TD error specifies the difference between the estimated Q value and the actual Q value. So, transitions with a high TD error are the transition we have to focus on and learn from because those are the transitions that deviate from our estimation. Intuitively, let us say you try to solve a set of problems, but you fail in solving two of these problems. You then give priority to those two problems alone to focus...