Book Image

Natural Language Processing and Computational Linguistics

By : Bhargav Srinivasa-Desikan
Book Image

Natural Language Processing and Computational Linguistics

By: Bhargav Srinivasa-Desikan

Overview of this book

Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis.
Table of Contents (22 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Classifying text

In our previous section, we discussed cluster, which was an unsupervised learning algorithm. Classification, on the other hand, is a supervised learning algorithm. What does supervised and unsupervised mean? In our previous example, we had the labels or the truth values. This is information about which class or label a document actually belongs to. But you would have also noticed we never used this information. When we trained our model, we never used the labels. This kind of learning is called unsupervised learning, and clustering is a popular example of an unsupervised learning task.

In classification problems, we are aware of the classes which we want to assign documents or data points to, and we use this information to train our model. In fact, as we are going to see very soon - there is hardly any change in our approach to clustering and classification, apart...