Book Image

Natural Language Processing and Computational Linguistics

By : Bhargav Srinivasa-Desikan
Book Image

Natural Language Processing and Computational Linguistics

By: Bhargav Srinivasa-Desikan

Overview of this book

Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis.
Table of Contents (22 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Deep learning for text (and more)


We're already aware of the power of neural networks first hand when we used word embeddings. This is one aspect of neural networks – using parts of the architecture itself to get useful information, but neural networks are far from limited to this. When we start using deeper networks, it is not prudent to use the weights to extract useful information – in these cases; we are more interested in the natural output of the neural network. We can train neural networks to perform multiple tasks to do with text analysis – indeed, for some of these tasks, the introduction of neural networks have completely changed how we approach the task.

A popular example here is Language Translation, and in particular, Google's Neural Translation model. Starting from until September 2016 Google used statistical and rule-based methods and models to perform its language translation, but with the advent of the Google Brain research team, they soon switched over to using neural networks...