Book Image

Natural Language Processing and Computational Linguistics

By : Bhargav Srinivasa-Desikan
Book Image

Natural Language Processing and Computational Linguistics

By: Bhargav Srinivasa-Desikan

Overview of this book

Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis.
Table of Contents (22 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Deep Learning for Text

Until now, we have explored the use of machine learning for text in a variety of contexts – topic modeling, clustering, classification, text summarization, and even our POS-taggers and NER-taggers were trained using machine learning. In this chapter, we will begin to explore one of the most cutting-edge forms of machine learning Deep Learning. Deep Learning is a form of ML where we use biologically inspired structures to generate algorithms and architectures to perform various tasks on the text. Some of these tasks are text generation, classification, and word embeddings. In this chapter, we will discuss some of the underpinnings of deep learning as well as how to implement our own deep learning models for text. Following are the topics we will cover in this chapter:

  • Deep learning
  • Deep learning for text
  • Text generation
...