Book Image

Natural Language Processing and Computational Linguistics

By : Bhargav Srinivasa-Desikan
Book Image

Natural Language Processing and Computational Linguistics

By: Bhargav Srinivasa-Desikan

Overview of this book

Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis.
Table of Contents (22 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Chapter 3. spaCy's Language Models

While we introduced text analysis in Chapter 1What is Text Analysis?, we did not discuss any of the technical details behind building a text analysis pipeline. In this chapter, we will introduce you to spaCy's language model – these will serve as the first step in text analysis and are the first building block in our pipelines. In this chapter, we will introduce the reader to spaCy and how we can use spaCy to help us in our text analysis tasks, as well as talk about some of its more powerful functionalities, such as Part of Speech-tagging and Named Entity Recognition-tagging. We will finish up with an example of how we can preprocess data quickly and efficiently using the natural language processing Python library, spaCy.

We will cover the following topics in this chapter:

  • spaCy
  • Installation
  • Tokenizing Text
  • Summary
  • References