Book Image

Natural Language Processing and Computational Linguistics

By : Bhargav Srinivasa-Desikan
Book Image

Natural Language Processing and Computational Linguistics

By: Bhargav Srinivasa-Desikan

Overview of this book

Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis.
Table of Contents (22 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Vector transformations in Gensim


Now that we know what vector transformations are, let's get used to creating them, and using them. We will be performing these transformations with Gensim, but even scikit-learn can be used. We'll also have a look at scikit-learn's approach later on.

Let's create our corpus now. We discussed earlier that a corpus is a collection of documents. In our examples, each document would just be one sentence, but this is obviously not the case in most real-world examples we will be dealing with. We should also note that once we are done with preprocessing, we get rid of all punctuation marks - as for as our vector representation is concerned, each document is just one sentence.

Of course, before we start, be sure to install Gensim. Like spaCy, pip or conda is the best way to do this based on your working environment.

from gensim import corpora
documents = [u"Football club Arsenal defeat local rivals this weekend.", u"Weekend football frenzy takes over London.", u"Bank...