Book Image

Hands-On Machine Learning for Cybersecurity

By : Soma Halder, Sinan Ozdemir
Book Image

Hands-On Machine Learning for Cybersecurity

By: Soma Halder, Sinan Ozdemir

Overview of this book

Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems
Table of Contents (13 chapters)
Free Chapter
Basics of Machine Learning in Cybersecurity
Using Data Science to Catch Email Fraud and Spam

Classes of time series models

Based on the use-case type that we have in hand, the relationship between the number of temporal sequences and time can be distributed among multiple classes. Problems bucketed into each of these classes have different machine learning algorithms to handle them.

Stochastic time series model

Stochastic processes are random mathematical objects that can be defined using random variables. These data points are known to randomly change over time. Stochastic processes can again be divided into three main classes that are dependent on historic data points. They are autoregressive (AR) models, the moving average (MA) model, and integrated (I) models. These models combine to form the autoregressive...