Book Image

Hands-On Neural Networks

By : Leonardo De Marchi, Laura Mitchell
Book Image

Hands-On Neural Networks

By: Leonardo De Marchi, Laura Mitchell

Overview of this book

Neural networks play a very important role in deep learning and artificial intelligence (AI), with applications in a wide variety of domains, right from medical diagnosis, to financial forecasting, and even machine diagnostics. Hands-On Neural Networks is designed to guide you through learning about neural networks in a practical way. The book will get you started by giving you a brief introduction to perceptron networks. You will then gain insights into machine learning and also understand what the future of AI could look like. Next, you will study how embeddings can be used to process textual data and the role of long short-term memory networks (LSTMs) in helping you solve common natural language processing (NLP) problems. The later chapters will demonstrate how you can implement advanced concepts including transfer learning, generative adversarial networks (GANs), autoencoders, and reinforcement learning. Finally, you can look forward to further content on the latest advancements in the field of neural networks. By the end of this book, you will have the skills you need to build, train, and optimize your own neural network model that can be used to provide predictable solutions.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: Getting Started
4
Section 2: Deep Learning Applications
9
Section 3: Advanced Applications

Long Short-Term Memory

One of the main problems in RNNs is that the gradient vanishes pretty quickly with an increase in the time steps. There are some architectures that help alleviate this problem, and the most common one is Long Short-Term Memory (LSTM).

A very common type of RNN is LSTM. This type of network is much better at capturing long-term dependencies than simple RNNs. The only unusual thing about LSTMs is the way that they compute the hidden state.

Essentially, an LSTM is composed of a cell, an Input Gate, an Output Gate, and a Forget Gate, which is the unusual thing about it, as shown in the following diagram:

LSTM architecture

This type of network is used to classify and make predictions from time series data...