Book Image

Intelligent Projects Using Python

By : Santanu Pattanayak
Book Image

Intelligent Projects Using Python

By: Santanu Pattanayak

Overview of this book

This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle.
Table of Contents (12 chapters)

Collaborative filtering using RBMs

Restricted Boltzmann machines can be used to carry out collaborative filtering when making recommendations. We will be using these RBMs to recommend movies to users. They are trained using ratings provided by the different users for different movies. A user would not have watched or rated all the movies, so this trained model can be used to recommend unseen movies to a user.

One of the first questions we should have is how to handle ranks in RBMs, since ranks are ordinal in nature, whereas RBMs work on binary data. The ranks can be treated as binary data, with the number of units to represent a rank being equal to the number of unique values for each rank. For example: in a rating system, where the ranks vary from one to five, and there would be five binary units, with the one corresponding to the rank set to one and the rest as zero. The unit...