Book Image

Hands-On Deep Learning Architectures with Python

By : Yuxi (Hayden) Liu, Saransh Mehta
Book Image

Hands-On Deep Learning Architectures with Python

By: Yuxi (Hayden) Liu, Saransh Mehta

Overview of this book

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: The Elements of Deep Learning
5
Section 2: Convolutional Neural Networks
8
Section 3: Sequence Modeling
10
Section 4: Generative Adversarial Networks (GANs)
12
Section 5: The Future of Deep Learning and Advanced Artificial Intelligence

Building the fundamentals

This section is where you will begin the journey of being a deep learning architect. Deep learning stands on the pillar of ANNs. Our first step should be to understand how they work. In this section, we describe the biological inspiration behind the artificial neuron and the mathematical model to create an ANN. We have tried keeping the mathematics to a minimum and focused more on concepts. However, we assume you are familiar with basic algebra and calculus.

Biological inspiration 

As we mentioned earlier, deep learning is inspired by the human brain. This seems a good idea indeed. To develop the intelligence of the brain inside a machine, you need the machine to mimic the brain! Now, if you...