Book Image

Hands-On Deep Learning Architectures with Python

By : Yuxi (Hayden) Liu, Saransh Mehta
Book Image

Hands-On Deep Learning Architectures with Python

By: Yuxi (Hayden) Liu, Saransh Mehta

Overview of this book

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: The Elements of Deep Learning
5
Section 2: Convolutional Neural Networks
8
Section 3: Sequence Modeling
10
Section 4: Generative Adversarial Networks (GANs)
12
Section 5: The Future of Deep Learning and Advanced Artificial Intelligence

Evolutionary path to DFNs

Warren McCulloch and Walter Pitts were the first to create a model of artificial neural networks back in 1943. They built the model on something called threshold logic. A threshold was calculated by summing up inputs, and the output was binary, zero, or one, according to the threshold. In 1958, another model of a neuron was created by Rosenblatt called perceptron. Perceptron is the simplest model of an artificial neuron that can classify inputs into two classes (we discussed this neuron in Chapter 1, Getting started with Deep Learning). The concept of training neural networks by backpropagating errors using chain rule was developed by Henry J. Kelley around the early 1960s. However, backpropagation as an algorithm was unstructured and the perceptron model failed to solve that famous XOR problem. In 1986, Geoff Hinton, David ...