Book Image

Natural Language Processing with Python Quick Start Guide

By : Nirant Kasliwal
Book Image

Natural Language Processing with Python Quick Start Guide

By: Nirant Kasliwal

Overview of this book

NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a work?ow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges.
Table of Contents (10 chapters)

Stemming and lemmatization

Stemming and lemmatization are very two very popular ideas that are used to reduce the vocabulary size of your corpus.

Stemming usually refers to a crude heuristic process that chops off the ends of words in the hope of achieving this goal correctly most of the time, and often includes the removal of derivational affixes.

Lemmatization usually refers to doing things properly with the use of a vocabulary and morphological analysis of words, normally aiming to remove inflectional endings only and to return the base or dictionary form of a word, which is known as the lemma.

If confronted with the token saw, stemming might return just s, whereas lemmatization would attempt to return either see or saw, depending on whether the use of the token was as a verb or a noun.
- Dr. Christopher Manning et al, 2008, [IR-Book]
(Chris Manning is a Professor in machine...