Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Natural Language Processing with Python Quick Start Guide
  • Table Of Contents Toc
Natural Language Processing with Python Quick Start Guide

Natural Language Processing with Python Quick Start Guide

By : Kasliwal
close
close
Natural Language Processing with Python Quick Start Guide

Natural Language Processing with Python Quick Start Guide

By: Kasliwal

Overview of this book

NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a work?ow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges.
Table of Contents (10 chapters)
close
close

Text Representations - Words to Numbers

Computers today cannot act on words or text directly. They need to be represented by meaningful number sequences. These long sequences of decimal numbers are called vectors, and this step is often referred to as the vectorization of text.

So, where are these word vectors used:

  • In text classification and summarization tasks
  • During similar word searches, such as synonyms
  • In machine translation (for example, when translating text from English to German)
  • When understanding similar texts (for example, Facebook articles)
  • During question and answer sessions, and general tasks (for example, chatbots used in appointment scheduling)

Very frequently, we see word vectors used in some form of categorization task. For instance, using a machine learning or deep learning model for sentiment analysis, with the following text vectorization methods:

  • TF...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Natural Language Processing with Python Quick Start Guide
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon