Book Image

Reinforcement Learning Algorithms with Python

By : Andrea Lonza
Book Image

Reinforcement Learning Algorithms with Python

By: Andrea Lonza

Overview of this book

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
Table of Contents (19 chapters)
Free Chapter
1
Section 1: Algorithms and Environments
5
Section 2: Model-Free RL Algorithms
11
Section 3: Beyond Model-Free Algorithms and Improvements
17
Assessments

Scalable evolution strategies

Now that we've introduced black-box evolutionary algorithms and evolution strategies in particular, we are ready to put what we have just learned into practice. The paper called Evolution Strategies as a Scalable Alternative to Reinforcement Learning by OpenAI made a major contribution to the adoption of evolution strategies as an alternative to reinforcement learning algorithms.

The main contribution of this paper is in the approach that scales ES extremely well with a number of CPUs. In particular, the new approach uses a novel communication strategy across CPUs that involves only scalars, and so it is able to scale across thousands of parallel workers.

Generally, ES requires more experience and thus is less efficient than RL. However, by spreading the computation across so many workers (thanks to the adoption of this new strategy), the task...