Book Image

Reinforcement Learning Algorithms with Python

By : Andrea Lonza
Book Image

Reinforcement Learning Algorithms with Python

By: Andrea Lonza

Overview of this book

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
Table of Contents (19 chapters)
Free Chapter
1
Section 1: Algorithms and Environments
5
Section 2: Model-Free RL Algorithms
11
Section 3: Beyond Model-Free Algorithms and Improvements
17
Assessments

An introduction to RL

RL is an area of machine learning that deals with sequential decision-making, aimed at reaching a desired goal. An RL problem is constituted by a decision-maker called an Agent and the physical or virtual world in which the agent interacts, is known as the Environment. The agent interacts with the environment in the form of Action which results in an effect. As a result, the environment will feedback to the agent a new State and Reward. These two signals are the consequences of the action taken by the agent. In particular, the reward is a value indicating how good or bad the action was, and the state is the current representation of the agent and the environment. This cycle is shown in the following diagram:

In this diagram the agent is represented by PacMan that based on the current state of the environment, choose which action to take. Its behavior will...