Book Image

Reinforcement Learning Algorithms with Python

By : Andrea Lonza
Book Image

Reinforcement Learning Algorithms with Python

By: Andrea Lonza

Overview of this book

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
Table of Contents (19 chapters)
Free Chapter
1
Section 1: Algorithms and Environments
5
Section 2: Model-Free RL Algorithms
11
Section 3: Beyond Model-Free Algorithms and Improvements
17
Assessments

Applications of RL

RL has been applied to a wide variety of fields, including robotics, finance, healthcare, and intelligent transportation systems. In general, they can be grouped into three major areas—automatic machines (such as autonomous vehicles, smart grids, and robotics), optimization processes (for example, planned maintenance, supply chains, and process planning) and control (for example, fault detection and quality control).

In the beginning, RL was only ever applied to simple problems, but deep RL opened the road to different problems, making it possible to deal with more complex tasks. Nowadays, deep RL has been showing some very promising results. Unfortunately, many of these breakthroughs are limited to research applications or games, and, in many situations, it is not easy to bridge the gap between purely research-oriented applications and industry problems...