Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying TensorFlow Machine Learning Cookbook
  • Table Of Contents Toc
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook - Second Edition

By : Nick McClure , Sujit Pal
2 (3)
close
close
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

2 (3)
By: Nick McClure , Sujit Pal

Overview of this book

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before. With the help of this book, you will work with recipes for training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and more. You will explore RNNs, CNNs, GANs, reinforcement learning, and capsule networks, each using Google's machine learning library, TensorFlow. Through real-world examples, you will get hands-on experience with linear regression techniques with TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will be shown how to take it to production. By the end of the book, you will be proficient in the field of machine intelligence using TensorFlow. You will also have good insight into deep learning and be capable of implementing machine learning algorithms in real-world scenarios.
Table of Contents (13 chapters)
close
close

Support Vector Machines

This chapter will cover some important recipes regarding how to use, implement, and evaluate Support Vector Machines (SVM) in TensorFlow. The following areas will be covered:

  • Working with a linear SVM
  • Reduction to linear regression
  • Working with kernels in TensorFlow
  • Implementing a non-linear SVM
  • Implementing a multi-class SVM
Both the prior-covered logistic regression and most of the SVMs in this chapter are binary predictors. While logistic regression tries to find any separating line that maximizes the distance (probabilistically), SVMs also try to minimize the error while maximizing the margin between classes. In general, if the problem has a large number of features compared to training examples, try logistic regression or a linear SVM. If the number of training examples is larger, or the data is not linearly separable, a SVM with a Gaussian kernel...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
TensorFlow Machine Learning Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon