Book Image

Machine Learning for Finance

By : Jannes Klaas
Book Image

Machine Learning for Finance

By: Jannes Klaas

Overview of this book

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways. The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.
Table of Contents (15 chapters)
Machine Learning for Finance
Other Books You May Enjoy

Working with pretrained models

Training large computer vision models is not only hard, but computationally expensive. Therefore, it's common to use models that were originally trained for another purpose and fine-tune them for a new purpose. This is an example of transfer learning.

Transfer learning aims to transfer the learning from one task to another task. As humans, we are very good at transferring what we have learned. When you see a dog that you have not seen before, you don't need to relearn everything about dogs for this particular dog; instead, you just transfer new learning to what you already knew about dogs. It's not economical to retrain a big network every time, as you'll often find that there are parts of the model that we can reuse.

In this section, we will fine-tune VGG-16, originally trained on the ImageNet dataset. The ImageNet competition is an annual computer vision competition, and the ImageNet dataset consists of millions of images of real-world objects, from dogs to...