Book Image

Machine Learning for Finance

By : Jannes Klaas
Book Image

Machine Learning for Finance

By: Jannes Klaas

Overview of this book

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways. The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.
Table of Contents (15 chapters)
Machine Learning for Finance
Other Books You May Enjoy

Using less data – active learning

Part of the motivation for generative models, be they GANs or VAEs, was always that they would allow us to generate data and therefore require less data. As data is inherently sparse, especially in finance, and we never have enough of it, generative models seem as though they are the free lunch that economists warn us about. Yet even the best GAN works with no data. In this section, we will have a look at the different methods used to bootstrap models with as little data as possible. This method is also called active learning or semi-supervised learning.

Unsupervised learning uses unlabeled data to cluster data in different ways. An example is autoencoders, where images can be transformed into learned and latent vectors, which can then be clustered without the need for labels that describe the image.

Supervised learning uses data with labels. An example is the image classifier we built in Chapter 3, Utilizing Computer Vision, or most of the other models...