Book Image

Ensemble Machine Learning Cookbook

By : Dipayan Sarkar, Vijayalakshmi Natarajan
Book Image

Ensemble Machine Learning Cookbook

By: Dipayan Sarkar, Vijayalakshmi Natarajan

Overview of this book

Ensemble modeling is an approach used to improve the performance of machine learning models. It combines two or more similar or dissimilar machine learning algorithms to deliver superior intellectual powers. This book will help you to implement popular machine learning algorithms to cover different paradigms of ensemble machine learning such as boosting, bagging, and stacking. The Ensemble Machine Learning Cookbook will start by getting you acquainted with the basics of ensemble techniques and exploratory data analysis. You'll then learn to implement tasks related to statistical and machine learning algorithms to understand the ensemble of multiple heterogeneous algorithms. It will also ensure that you don't miss out on key topics, such as like resampling methods. As you progress, you’ll get a better understanding of bagging, boosting, stacking, and working with the Random Forest algorithm using real-world examples. The book will highlight how these ensemble methods use multiple models to improve machine learning results, as compared to a single model. In the concluding chapters, you'll delve into advanced ensemble models using neural networks, natural language processing, and more. You’ll also be able to implement models such as fraud detection, text categorization, and sentiment analysis. By the end of this book, you'll be able to harness ensemble techniques and the working mechanisms of machine learning algorithms to build intelligent models using individual recipes.
Table of Contents (14 chapters)

Ensemble meta-estimators

The bagging classifier and the bagging regressor are ensemble meta-estimators that fit the base classifier and regressor models respectively on random subsets of the original dataset. The predictions from each model are combined to create the final prediction. These kinds of meta-estimators induce randomization into the model-building process and aggregate the outcome. The aggregation averages over the iterations for a numerical target variable and performs a plurality vote in order to reach a categorical outcome.

Bagging classifiers

Bagging classifiers train each classifier model on a random subset of the original training set and aggregate the predictions, then perform a plurality voting for a categorical...