Book Image

Generative Adversarial Networks Projects

By : Kailash Ahirwar
Book Image

Generative Adversarial Networks Projects

By: Kailash Ahirwar

Overview of this book

Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects.
Table of Contents (11 chapters)

Advantages of GANs

GANs have certain advantages over other methods of supervised or unsupervised learning:

  • GANs are an unsupervised learning method: Acquiring labeled data is a manual process that takes a lot of time. GANs don't require labeled data; they can be trained using unlabeled data as they learn the internal representations of the data.
  • GANs generate data: One of the best things about GANs is that they generate data that is similar to real data. Because of this, they have many different uses in the real world. They can generate images, text, audio, and video that is indistinguishable from real data. Images generated by GANs have applications in marketing, e-commerce, games, advertisements, and many other industries.

  • GANs learn density distributions of data: GANs learn the internal representations of data. As mentioned earlier, GANs can learn messy and complicated distributions of data. This can be used for many machine learning problems.
  • The trained discriminator is a classifier: After training, we get a discriminator and a generator. The discriminator network is a classifier and can be used to classify objects.