Book Image

Hands-On Natural Language Processing with Python

By : Rajesh Arumugam, Rajalingappaa Shanmugamani, Auguste Byiringiro, Chaitanya Joshi, Karthik Muthuswamy
Book Image

Hands-On Natural Language Processing with Python

By: Rajesh Arumugam, Rajalingappaa Shanmugamani, Auguste Byiringiro, Chaitanya Joshi, Karthik Muthuswamy

Overview of this book

Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts.
Table of Contents (15 chapters)
6
Searching and DeDuplicating Using CNNs
7
Named Entity Recognition Using Character LSTM

Text preprocessing and exploratory analysis

First, we will provide a hands-on overview of NLTK by working on some basic NLP tasks, such as text preprocessing and exploratory analysis. The text preprocessing step involves tasks such as tokenization, stemming, and stop word removal. An exploratory analysis of prepared text data can be performed to understand its main characteristics, such as the main topic of the text and word frequency distributions.

Tokenization

Word tokens are the basic units of text involved in any NLP task. The first step, when processing text, is to split it into tokens. NLTK provides different types of tokenizers for doing this. We will look at how to tokenize Twitter comments from the Twitter samples...