Book Image

Hands-On Natural Language Processing with Python

By : Rajesh Arumugam, Rajalingappaa Shanmugamani, Auguste Byiringiro, Chaitanya Joshi, Karthik Muthuswamy
Book Image

Hands-On Natural Language Processing with Python

By: Rajesh Arumugam, Rajalingappaa Shanmugamani, Auguste Byiringiro, Chaitanya Joshi, Karthik Muthuswamy

Overview of this book

Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts.
Table of Contents (15 chapters)
6
Searching and DeDuplicating Using CNNs
7
Named Entity Recognition Using Character LSTM

Training a bag-of-words classifier

In the previous section, we utilized simple binary features for the words in the reviews in order to learn positive and negative sentiments. A better approach would be to use latent features, such as the frequency of the words used in the text. Compared to a binary representation of the presence or absence of words, the count of the words may better capture the characteristics of the text or document. Bag-of-words is a vector representation of text. Each of the vector dimensions captures either the frequency, presence or absence, or weighted values of words in the text. A bag-of-words representation does not capture the order of the words.

The binary feature extraction that was discussed in the previous section is, therefore, a simple bag-of-words representation of text. We will now look at an example of classifying sentiments in tweets using...