Book Image

Hands-On Natural Language Processing with Python

By : Rajesh Arumugam, Rajalingappaa Shanmugamani, Auguste Byiringiro, Chaitanya Joshi, Karthik Muthuswamy
Book Image

Hands-On Natural Language Processing with Python

By: Rajesh Arumugam, Rajalingappaa Shanmugamani, Auguste Byiringiro, Chaitanya Joshi, Karthik Muthuswamy

Overview of this book

Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts.
Table of Contents (15 chapters)
6
Searching and DeDuplicating Using CNNs
7
Named Entity Recognition Using Character LSTM

Extending memory networks for dialog modeling

We consider a dialog as a turn-based conversation between two participants (say A and B), where each turn of dialog involves an utterance by A followed by a response by B. We can then treat the production of a response at each turn as an NLU task where we must choose or generate an appropriate response for an incoming query based on the entire conversation history before the query.

We have already discussed how we can build a memory network-based QA model, which takes a question and some associated facts as input, and produces a response to the question by reasoning over the facts. To effectively model dialog as part of such a framework, the utterance at each turn of the conversation would be a question, and the entire dialog history would be the facts, based on which a memory network will produce the response:

For dialog to continue...