Book Image

Hands-On Deep Learning with Go

By : Gareth Seneque, Darrell Chua
Book Image

Hands-On Deep Learning with Go

By: Gareth Seneque, Darrell Chua

Overview of this book

Go is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Deep Learning in Go, Neural Networks, and How to Train Them
6
Section 2: Implementing Deep Neural Network Architectures
11
Section 3: Pipeline, Deployment, and Beyond!

Exploring Pachyderm

Our focus for this book is on developing deep learning systems in Go. So, naturally, now that we are talking about how to manage the data that we feed to our networks, let's take a look at a tool to do so that is also written in Go.

Pachyderm is a mature and scalable tool that offers containerized data pipelines. In these, everything you could possibly need, from data to tools, is held together in a single place where deployments can be maintained and managed and versioning for the data itself. The Pachyderm team sell their tool as Git for data, which is a useful analogy. Ideally, we want to version the entire pipeline so that we know which data was used to train, and which, in turn, gave us the specific prediction of X.

Pachyderm removes much of the complexity of managing these pipelines. Both Docker and Kubernetes run under the hood. We will explore...