Book Image

Hands-On Deep Learning with Go

By : Gareth Seneque, Darrell Chua
Book Image

Hands-On Deep Learning with Go

By: Gareth Seneque, Darrell Chua

Overview of this book

Go is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Deep Learning in Go, Neural Networks, and How to Train Them
6
Section 2: Implementing Deep Neural Network Architectures
11
Section 3: Pipeline, Deployment, and Beyond!

Gradient descent and backpropagation

We've talked about backpropagation and gradient descent in the context of example code in the first section of this chapter, but it can be hard to really understand the concepts at play when Gorgonia is doing a lot of the heavy lifting for us. So, we will now take a look at the actual process itself.

Gradient descent

Backpropagation is how we really train our model; it's an algorithm we use to minimize the prediction error by adjusting our model's weights. We usually do this via a method called gradient descent.

Let's begin with a basic example—let's say we want to train a simple neural network to do the following, by multiplying a number by 0.5:

Input...