Book Image

Hands-On Deep Learning with Go

By : Gareth Seneque, Darrell Chua
Book Image

Hands-On Deep Learning with Go

By: Gareth Seneque, Darrell Chua

Overview of this book

Go is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Deep Learning in Go, Neural Networks, and How to Train Them
6
Section 2: Implementing Deep Neural Network Architectures
11
Section 3: Pipeline, Deployment, and Beyond!

RNNs and vanishing gradients

RNNs themselves are an important architectural innovation, but run into problems in terms of their gradients vanishing. When gradient values become so small that the updates are equally tiny, this slows or even halts learning. Your digital neurons die, and your network doesn't do what you want it to do. But is a neural network with a bad memory better than one with no memory at all?

Let's zoom in a bit and discuss what's actually going on when you run into this problem. Recall the formula for calculating the value for a given weight during backpropagation:

W = W - LR*G

Here, the weight value equals the weight minus (learning rate multiplied by the gradient).

Your network is propagating error derivatives across layers and across timesteps. The larger your dataset, the greater the number of timesteps and parameters, and so the greater...