Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Keras Reinforcement Learning Projects
  • Table Of Contents Toc
  • Feedback & Rating feedback
Keras Reinforcement Learning Projects

Keras Reinforcement Learning Projects

By : Giuseppe Ciaburro
2.3 (3)
close
close
Keras Reinforcement Learning Projects

Keras Reinforcement Learning Projects

2.3 (3)
By: Giuseppe Ciaburro

Overview of this book

Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You’ll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You’ll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you’ve understood the basics, you’ll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you’ll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you’ll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI.
Table of Contents (13 chapters)
close
close

Handwritten digit recognition using an autoencoder

An autoencoder is a neural network whose purpose is to code its input in small size. The result obtained will then be used to reconstruct the input itself. Autoencoders are made up of the union of the following two subnets:

  • Encoder, which calculates the z = ϕ(x) function, given an x input, the encoder encodes it in a z variable, also called latent variable. The z variable usually has much smaller dimensions than x.
  • Decoder, which calculates the x' = ψ(z) function.

Since z is the code of x produced by the encoder, the decoder must decode it so that x' is similar to x.

The training of autoencoders is intended to minimize the mean squared error (MSE) between the input and the result.

MSE is the average squared difference between the output and targets. Lower values are indicative of better results. Zero means...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Keras Reinforcement Learning Projects
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon