Book Image

Hands-On Deep Learning Algorithms with Python

By : Sudharsan Ravichandiran
Book Image

Hands-On Deep Learning Algorithms with Python

By: Sudharsan Ravichandiran

Overview of this book

Deep learning is one of the most popular domains in the AI space that allows you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles involved, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into recurrent neural networks (RNNs) and LSTM and how to generate song lyrics with RNN. Next, you will master the math necessary to work with convolutional and capsule networks, widely used for image recognition tasks. You will also learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Finally, you will explore GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects.
Table of Contents (17 chapters)
Free Chapter
1
Section 1: Getting Started with Deep Learning
4
Section 2: Fundamental Deep Learning Algorithms
10
Section 3: Advanced Deep Learning Algorithms

Relation networks

Relation networks consist of two important functions: an embedding function, denoted by and the relation function, denoted by . The embedding function is used for extracting the features from the input. If our input is an image, then we can use a convolutional network as our embedding function, which will give us the feature vectors/embeddings of an image. If our input is text, then we can use LSTM networks to get the embeddings of the text. Let us say, we have a support set containing three classes, {lion, elephant, dog} as shown below:

And let's say we have a query image , as shown in the following diagram, and we want to predict the class of this query image:

First, we take each image, , from the support set and pass it to the embedding function for extract the features. Since our support set has images, we can use a convolutional network as our embedding...