Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Data Analysis with Scala
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Data Analysis with Scala

Hands-On Data Analysis with Scala

By : Gupta
5 (3)
close
close
Hands-On Data Analysis with Scala

Hands-On Data Analysis with Scala

5 (3)
By: Gupta

Overview of this book

Efficient business decisions with an accurate sense of business data helps in delivering better performance across products and services. This book helps you to leverage the popular Scala libraries and tools for performing core data analysis tasks with ease. The book begins with a quick overview of the building blocks of a standard data analysis process. You will learn to perform basic tasks like Extraction, Staging, Validation, Cleaning, and Shaping of datasets. You will later deep dive into the data exploration and visualization areas of the data analysis life cycle. You will make use of popular Scala libraries like Saddle, Breeze, Vegas, and PredictionIO for processing your datasets. You will learn statistical methods for deriving meaningful insights from data. You will also learn to create applications for Apache Spark 2.x on complex data analysis, in real-time. You will discover traditional machine learning techniques for doing data analysis. Furthermore, you will also be introduced to neural networks and deep learning from a data analysis standpoint. By the end of this book, you will be capable of handling large sets of structured and unstructured data, perform exploratory analysis, and building efficient Scala applications for discovering and delivering insights
Table of Contents (14 chapters)
close
close
Lock Free Chapter
1
Section 1: Scala and Data Analysis Life Cycle
7
Section 2: Advanced Data Analysis and Machine Learning
10
Section 3: Real-Time Data Analysis and Scalability

Streaming a k-means clustering algorithm using Spark

The k-means algorithm is an unsupervised machine learning (ML) clustering algorithm. The objective of this algorithm is to build k centers around which data points are centered, thereby forming k clusters. The most common implementation of this algorithm is generally done using batch-oriented processing. Streaming-based clustering algorithms are also available for this, with the following properties:

  • The k clusters are built using initial data
  • As new data arrives in minibatches, existing k clusters are updated to compute new k clusters
  • It also possible to control the decay or decrease in the significance of older data

At a high level, the preceding steps are quite similar to the word count problem that we solved using the streaming solution. The goal of the k-means algorithm is to partition the data into k clusters. If the...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Data Analysis with Scala
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon