Book Image

Hands-On Machine Learning for Algorithmic Trading

By : Stefan Jansen
Book Image

Hands-On Machine Learning for Algorithmic Trading

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You’ll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.
Table of Contents (23 chapters)

Recurrent Neural Networks

In the last chapter, we covered the ability of Convolutional Neural Networks (CNNs) to learn feature representations from grid-like data. In this chapter, we introduce recurrent neural networks (RNNs), which are designed for processing sequential data.

Feedforward Neural Networks (FFNNs) treat the feature vectors for each sample as independent and identically distributed. As a result, they do not systematically take prior data points into account when evaluating the current observation. In other words, they have no memory.

One-dimensional convolutions, which we covered in the previous chapter, produce sequence elements that are a function of a small number of their neighbors. However, they only allow for shallow parameter-sharing by applying the same convolutional kernel to the relevant time steps.

The major innovation of the RNN model is that each output...