Book Image

Hands-On Unsupervised Learning with Python

By : Giuseppe Bonaccorso
Book Image

Hands-On Unsupervised Learning with Python

By: Giuseppe Bonaccorso

Overview of this book

Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python. This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images. By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges.
Table of Contents (12 chapters)

Analyzing a dendrogram

A dendrogram is a tree data structure that allows us to represent the entire clustering hierarchy produced by either an agglomerative or divisive algorithm. The idea is to put the samples on the x axis and the dissimilarity level on the y axis. Whenever two clusters are merged, the dendrogram shows a connection corresponding to the dissimilarity level at which it occurred. Hence, in an agglomerative scenario, a dendrogram always starts with all samples considered as clusters and moves upward (the direction is purely conventional) until a single cluster is defined.

For didactic purposes, it's preferable to show the dendrogram corresponding to a very small dataset, X, but all the concepts that we are going to discuss can be applied to any situation. However, with larger datasets, it will often be necessary to apply some truncations in order to visualize...