Book Image

Python Deep Learning - Second Edition

By : Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Book Image

Python Deep Learning - Second Edition

By: Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca

Overview of this book

With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.
Table of Contents (12 chapters)

Introduction to genetic algorithms playing games

For a long time, the best results and the bulk of the research into AIs playing video game environments were around genetic algorithms. This approach involves creating a set of modules that take parameters to control the behavior of the AI. The range of parameter values is then set by a selection of genes. A group of agents would then be created using different combinations of these genes, which would be run on the game.

The most successful set of agent's genes would be selected, then a new generation of agents would be created using combinations of the successful agent's genes. Those would again be run on the game and so on until a stopping criteria is reached, normally either a maximum number of iterations or a level of performance in the game. Occasionally, when creating a new generation, some of the genes can be mutated...