Book Image

Hands-On Generative Adversarial Networks with PyTorch 1.x

By : John Hany, Greg Walters
Book Image

Hands-On Generative Adversarial Networks with PyTorch 1.x

By: John Hany, Greg Walters

Overview of this book

With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Introduction to GANs and PyTorch
5
Section 2: Typical GAN Models for Image Synthesis

Creating a DCGAN with PyTorch

Let's start writing PyTorch code to create a DCGAN model. Here, we assume that you are using the Python 3.7 environment in Ubuntu 18.04. If not, please refer to Chapter 2, Getting Started with PyTorch 1.3, to learn how to create an Anaconda environment.

First, let's create a Python source file called dcgan.py and import the packages that we need:

import os
import sys

import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils

import utils

Here, NumPy is only used to initialize a random seed. If you don't have NumPy installed, simple replace np.random with random and insert the import random line after import os. In the last...