Book Image

Learning OpenCV 4 Computer Vision with Python 3 - Third Edition

By : Joseph Howse, Joe Minichino
Book Image

Learning OpenCV 4 Computer Vision with Python 3 - Third Edition

By: Joseph Howse, Joe Minichino

Overview of this book

Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You’ll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You’ll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you’ll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you’ll have opportunities for hands-on activities. Next, you’ll tackle two popular challenges: face detection and face recognition. You’ll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you’ll develop your skills in 3D tracking and augmented reality. Finally, you’ll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you’ll have the skills you need to execute real-world computer vision projects.
Table of Contents (13 chapters)

Detecting Harris corners

Let's start by finding corners using the Harris corner detection algorithm. We will do this by implementing an example. If you continue to study OpenCV beyond this book, you will find that chessboards are a common subject of analysis in computer vision, partly because a checkered pattern is suited to many types of feature detection, and partly because chess is a popular pastime, especially in Russia, where many of OpenCV's developers live.

Here is our sample image of a chessboard and chess pieces:

OpenCV has a handy function called cv2.cornerHarris, which detects corners in an image. We can see this function at work in the following basic example:

import cv2

img = cv2.imread('../images/chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)
img[dst > 0.01 * dst.max()] = [0, 0, 255]