Book Image

Learning OpenCV 4 Computer Vision with Python 3 - Third Edition

By : Joseph Howse, Joe Minichino
Book Image

Learning OpenCV 4 Computer Vision with Python 3 - Third Edition

By: Joseph Howse, Joe Minichino

Overview of this book

Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You’ll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You’ll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you’ll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you’ll have opportunities for hands-on activities. Next, you’ll tackle two popular challenges: face detection and face recognition. You’ll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you’ll develop your skills in 3D tracking and augmented reality. Finally, you’ll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you’ll have the skills you need to execute real-world computer vision projects.
Table of Contents (13 chapters)

Understanding 3D image tracking and augmented reality

We have already solved problems involving image matching in Chapter 6, Retrieving Images and Searching Using Image Descriptors. Moreover, we have solved problems involving continuous tracking in Chapter 8, Tracking Objects. Therefore, we are familiar with many of the components of an image tracking system, though we have not yet tackled any 3D tracking problems.

So, what exactly is 3D tracking? Well, it is the process of continually updating an estimate of an object's pose in a 3D space, typically, in terms of six variables: three variables to represent the object's 3D translation (that is, position) and the other three variables to represent its 3D rotation.

A more technical term for 3D tracking is 6DOF tracking – that is, tracking with 6 degrees of freedom, meaning the 6 variables we just mentioned.