Book Image

TensorFlow Reinforcement Learning Quick Start Guide

By : Kaushik Balakrishnan
Book Image

TensorFlow Reinforcement Learning Quick Start Guide

By: Kaushik Balakrishnan

Overview of this book

Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving. The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator. By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems.
Table of Contents (11 chapters)

Defining the Bellman equation

The Bellman equation, named after the great computer scientist and applied mathematician Richard E. Bellman, is an optimality condition associated with dynamic programming. It is widely used in RL to update the policy of an agent.

Let's define the following two quantities:

The first quantity, Ps,s', is the transition probability from state s to the new state s'. The second quantity, Rs,s', is the expected reward the agent receives from state s, taking action a, and moving to the new state s'. Note that we have assumed the MDP property, that is, the transition to state at time t+1 only depends on the state and action at time t. Stated in these terms, the Bellman equation is a recursive relationship, and is given by the following equations respectively for the value function and action-value function:

Note that the Bellman equations represent the value function V at a state, and as functions of the value function at other states; similarly for the action-value function Q.