Book Image

Machine Learning for OpenCV 4 - Second Edition

By : Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler
Book Image

Machine Learning for OpenCV 4 - Second Edition

By: Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler

Overview of this book

OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition. You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you’ll get to grips with the latest Intel OpenVINO for building an image processing system. By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Machine Learning and OpenCV
6
Section 2: Operations with OpenCV
11
Section 3: Advanced Machine Learning with OpenCV

Understanding ensemble methods

The goal of ensemble methods is to combine the predictions of several individual estimators built with a given learning algorithm in order to solve a shared problem. Typically, an ensemble consists of two major components:

  • A set of models
  • A set of decision rules that govern how the results of these models are combined into a single output
The idea behind ensemble methods has much to do with the wisdom of the crowd concept. Rather than the opinion of a single expert, we consider the collective opinion of a group of individuals. In the context of machine learning, these individuals would be classifiers or regressors. The idea is that if we just ask a large enough number of classifiers, one of them ought to get it right.

A consequence of this procedure is that we get a multitude of opinions about any given problem. So, how do we know which classifier...