Book Image

Machine Learning for OpenCV 4 - Second Edition

By : Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler
Book Image

Machine Learning for OpenCV 4 - Second Edition

By: Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler

Overview of this book

OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition. You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you’ll get to grips with the latest Intel OpenVINO for building an image processing system. By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Machine Learning and OpenCV
6
Section 2: Operations with OpenCV
11
Section 3: Advanced Machine Learning with OpenCV

Combining decision trees into a random forest

A popular variation of bagged decision trees are the so-called random forests. These are essentially a collection of decision trees, where each tree is slightly different from the others. In contrast to bagged decision trees, each tree in a random forest is trained on a slightly different subset of data features.

Although a single tree of unlimited depth might do a relatively good job of predicting the data, it is also prone to overfitting. The idea behind random forests is to build a large number of trees, each of them trained on a random subset of data samples and features. Because of the randomness of the procedure, each tree in the forest will overfit the data in a slightly different way. The effect of overfitting can then be reduced by averaging the predictions of the individual trees.

...