Book Image

Machine Learning for OpenCV 4 - Second Edition

By : Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler
Book Image

Machine Learning for OpenCV 4 - Second Edition

By: Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler

Overview of this book

OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition. You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you’ll get to grips with the latest Intel OpenVINO for building an image processing system. By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Machine Learning and OpenCV
6
Section 2: Operations with OpenCV
11
Section 3: Advanced Machine Learning with OpenCV

Dealing with nonlinear decision boundaries

What if the data cannot be optimally partitioned using a linear decision boundary? In such a case, we say the data is not linearly separable.

The basic idea to deal with data that is not linearly separable is to create nonlinear combinations of the original features. This is the same as saying we want to project our data to a higher-dimensional space (for example, from 2D to 3D), in which the data suddenly becomes linearly separable.

This concept is illustrated in the following diagram:

The preceding diagram shows how to find linear hyperplanes in higher-dimensional spaces. If data in its original input space (left) cannot be linearly separated, we can apply a mapping function ϕ(.) that projects the data from 2D into a 3D (or a high-dimensional) space. In this higher-dimensional space, we may find that there is now a linear decision...