Book Image

Machine Learning for OpenCV 4 - Second Edition

By : Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler
Book Image

Machine Learning for OpenCV 4 - Second Edition

By: Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler

Overview of this book

OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition. You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you’ll get to grips with the latest Intel OpenVINO for building an image processing system. By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Machine Learning and OpenCV
6
Section 2: Operations with OpenCV
11
Section 3: Advanced Machine Learning with OpenCV

Detecting pedestrians in the wild

We briefly talked about the difference between detection and recognition. While recognition is concerned with classifying objects (for example, as pedestrians, cars, bicycles, and so on), detection is basically answering the question: is there a pedestrian present in this image?

The core idea behind most detection algorithms is to split up an image into many small patches, and then classify each image patch as either containing a pedestrian or not. This is exactly what we are going to do in this section. In order to arrive at our own pedestrian detection algorithm, we need to perform the following steps:

  1. Build a database of images containing pedestrians. These will be our positive data samples.
  2. Build a database of images not containing pedestrians. These will be our negative data samples.
  3. Train an SVM on the dataset.
  4. Apply the SVM to every possible...