Book Image

Hands-On Exploratory Data Analysis with Python

By : Suresh Kumar Mukhiya, Usman Ahmed
Book Image

Hands-On Exploratory Data Analysis with Python

By: Suresh Kumar Mukhiya, Usman Ahmed

Overview of this book

Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes.
Table of Contents (17 chapters)
1
Section 1: The Fundamentals of EDA
6
Section 2: Descriptive Statistics
11
Section 3: Model Development and Evaluation

Types of analysis

In this section, we are going to explore different types of analysis. We will start with univariate analysis, then move on to bivariate analysis, and, finally, we will discuss multivariate analysis.

Understanding univariate analysis

Remember the variables we worked with in Chapter 5, Descriptive Statistics, for measures of descriptive statistics? There we had a set of integers ranging from 2 to 12. We calculated the mean, median, and mode of that set and analyzed the distribution patterns of integers. Then, we calculated the mean, mode, median, and standard deviation of the values available in the height column of each type of automobile dataset. Such an analysis on a single type of dataset is called univariate...