Book Image

Python Data Science Essentials - Third Edition

By : Alberto Boschetti, Luca Massaron
Book Image

Python Data Science Essentials - Third Edition

By: Alberto Boschetti, Luca Massaron

Overview of this book

Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users
Table of Contents (11 chapters)

Hyperparameter optimization

A machine learning hypothesis is not simply determined by the learning algorithm but also by its hyperparameters (the parameters of the algorithm that have to be fixed prior, and which cannot be learned during the training process) and the selection of variables to be used to achieve the best learned parameters.

In this section, we will explore how to extend the cross-validation approach to find the best hyperparameters that are able to generalize to our test set. We will keep on using the handwritten digits dataset offered by the Scikit-learn package. Here's a useful reminder about how to load the dataset:

In: from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data, digits.target

In addition, we will keep on using support vector machines as our learning algorithm:

In: from sklearn import svm
h = svm.SVC()
...