Book Image

Mastering PyTorch

By : Ashish Ranjan Jha
Book Image

Mastering PyTorch

By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Defining the generator and discriminator networks

As mentioned earlier, GANs are composed of two components – the generator and the discriminator. Both of these are essentially neural networks. Generators and discriminators with different neural architectures produce different types of GANs. For example, DCGANs purely have CNNs as the generator and discriminator. You can find a list of different types of GANs along with their PyTorch implementations at https://github.com/eriklindernoren/PyTorch-GAN.

For any GAN that is used to generate some kind of real data, the generator usually takes random noise as input and produces an output with the same dimensions as the real data. We call this generated output fake data. The discriminator, on the other hand, works as a binary classifier. It takes in the generated fake data and the real data (one at a time) as input and predicts whether the input data is real or fake. Figure 8.1 shows a diagram of the overall GAN model schematic:

...