Book Image

Mastering PyTorch

By : Ashish Ranjan Jha
Book Image

Mastering PyTorch

By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Exploring the evolution of recurrent networks

Recurrent networks have been around since the 80s. In this section, we will explore the evolution of the recurrent network architecture since its inception. We will discuss and reason about the developments that were made to the architecture by going through the key milestones in the evolution of (RNNs). Before jumping right into the timelines, we'll quickly review the different types of RNNs and how they relate to a general feed-forward neural network.

Types of recurrent neural networks

While most supervised machine learning models model one-to-one relationships, (RNNs) can model the following types of input-output relationships:

  • Many-to-many (instantaneous)

    Example: Named-entity-recognition: Given a sentence/text, tag the words with named entity categories such as names, organizations, locations, and so on.

  • Many-to-many (encoder-decoder)

    Example: Machine translation (say, from English text to German text): Takes in...