Book Image

Mastering PyTorch

By : Ashish Ranjan Jha
Book Image

Mastering PyTorch

By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Developing a RandWireNN model from scratch

We discussed EfficientNets in Chapter 3, Deep CNN Architectures, where we explored the idea of finding the best model architecture instead of specifying it manually. RandWireNNs, or randomly wired neural networks, as the name suggests, are built on a similar concept. In this section, we will study and build our own RandWireNN model using PyTorch.

Understanding RandWireNNs

First, a random graph generation algorithm is used to generate a random graph with a predefined number of nodes. This graph is converted into a neural network by a few definitions being imposed on it, such as the following:

  • Directed: The graph is restricted to be a directed graph, and the direction of edge is considered to be the direction of data flow in the equivalent neural network.
  • Aggregation: Multiple incoming edges to a node (or neuron) are aggregated by weighted sum, where the weights are learnable.
  • Transformation: Inside each node of this graph...