Book Image

Hands-On Neural Networks with TensorFlow 2.0

By : Paolo Galeone
Book Image

Hands-On Neural Networks with TensorFlow 2.0

By: Paolo Galeone

Overview of this book

TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Neural Network Fundamentals
4
Section 2: TensorFlow Fundamentals
8
Section 3: The Application of Neural Networks

Unsupervised learning

In comparison to supervised learning, unsupervised learning does not need a dataset of labeled examples during the training phaselabels are only needed during the testing phase when we want to evaluate the performance of the model.

The purpose of unsupervised learning is to discover natural partitions in the training set. What does this mean? Think about the MNIST dataset—it has 10 classes, and we know this because every example has a different label in the [1,10] range. An unsupervised learning algorithm has to discover that there are 10 different objects inside the dataset and does this by looking at the examples without prior knowledge of the label.

It is clear that unsupervised learning algorithms are challenging compared to supervised learning ones since they cannot rely on the label's information, but they have to discover features...