Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Neural Networks with TensorFlow 2.0
  • Table Of Contents Toc
Hands-On Neural Networks with TensorFlow 2.0

Hands-On Neural Networks with TensorFlow 2.0

By : Galeone
3.7 (7)
close
close
Hands-On Neural Networks with TensorFlow 2.0

Hands-On Neural Networks with TensorFlow 2.0

3.7 (7)
By: Galeone

Overview of this book

TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production.
Table of Contents (15 chapters)
close
close
Lock Free Chapter
1
Section 1: Neural Network Fundamentals
4
Section 2: TensorFlow Fundamentals
8
Section 3: The Application of Neural Networks

Summary

In this chapter, the concepts of transfer learning and fine-tuning were introduced. Training a very deep convolutional neural network from scratch, starting from random weights, requires the correct equipment, which is only found in academia and some big companies. Moreover, it can be a costly process since finding the architecture that achieves state-of-the-art results on a classification task requires multiple models to be designed and trained and for each of them to repeat the training process to search for the hyperparameter configuration that achieves the best results.

For this reason, transfer learning is the recommended practice to follow. It is especially useful when prototyping new solutions since it speeds up the training time and reduces the training costs.

TensorFlow Hub is the online library offered by the TensorFlow ecosystem. It contains an online catalog...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Neural Networks with TensorFlow 2.0
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon